iGCSE Computer Science — Unit 4 English Name: Class:
TOpiC 20 Programming Languages - Summary ©2025 Chris Nielsen — www.nielsenedu.com

Vocabulary

instruction set (n): the list of all possible commands a particular CPU knows how to carry out.

machine code (n): the binary codes representing each of the instructions in the instruction set.

source code (n): the text of the program that a programmer writes. This may be assembly code, or code
written in a high-level language.

object code (n): the translated source code. This will often be machine code, but might also be an
intermediate code (such as Java bytecode) which needs to be further translated before it can be
executed.

mnemonic (n): a memory aid or technique designed to help encode, retain, and recall information more
effectively. This includes abbreviations, rhymes, diagrams, etc. They leverage the brains natural
preference for patterns and connections. In the case of assembly language, each instruction is an
easy-to-remember abbreviation of what the instructions does, such as SUB for subtract or SLL
for shift left logical.

abbreviation (n): any shortened form of a word or phrase

assembly language (n): a low-level languages written in mnemonics. Assembly language is architecture
specific (for an instruction set, there is an assembly language). Although there are some
exceptions, there is a near one-to-one mapping between an assembly language mnemonic, such
as ADD or LOAD, and a machine code instruction for the processor.

acronym (n): a specific type of abbreviation that forms a pronounceable word from the initial letters of a
series of words, for example: SCUBA for self-contained underwater breathing aparatus,
LASER for light amplification by stimulated emission of radiation, or RADAR for radio
detection and ranging. Note that the Pearson textbook calls the assembly language mnemonics
acronyms, but most, such as SUB or SLL are abbreviations but not acronyms.

low-level programming language (n): a programming language that is closely related to the CPU’s
machine code.

translator (n): a program that converts source code into machine code. Assemblers, compilers and
interpreters are all translators.

assembler (n): a translator that converts the mnemonics of assembly language into machine language
instructions for the microprocessor to carry out.

interpreter (n): a translator that converts high-level language source code into object code, often machine
code and executes the code as it translates.

compiler (n): a translator that converts high-level language source code into object code, often machine
code. The source code is translated “all at once” and saved to be executed later.

emulator (n): hardware or software that allows one type of computer system to behave like another

reboot (n): to start a device again (e.g.: turn off the computer and turn it on again).

Concepts

Machine Code

Also called machine language. Understand that the machine code for one architecture (one instruction set)
of processor will be very different from the machine code for another architecture. For example, Intel and
AMD make processors that implement the x86 instruction set and includes instructions of variable length

(some instructions are longer than 32 bits) and complex instructions that perform multi-step operations.

Interpreters

Although the Pearson textbook says interpreted code is “translated and executed one line at a time”,(so
you may write this on the exams), do know this is an over simplification, and for modern interpreters, the
code may be compiled and optimized in entire logical blocks like loops or functions, and perhaps cached
for use if the section of code is run again.

Page 1 of 2



iGCSE Computer Science — Unit 4 English Name: Class:
TOpiC 20 Programming Languages - Summary ©2025 Chris Nielsen — www.nielsenedu.com

Assembly versus Machine Code

It is sometimes said that there is a one-to-one mapping from assembly language instruction to machine
code. This is true for many assembly language instructions, however, there are cases where the assembly
language instruction represents a task that actually requires more than one machine code instruction to
implement. This is to simplify commonly-used machine code patterns. For example, RISC-V assembly
includes an instruction to load an immediate 32-bit value into a register:

1i t0, 0x12345678 # load value into register t0 (x5)

It should be obvious that it is not possible to load a 32-bit immediate value into a register using only one
RISC-V machine code instruction because the length of each RISC-V instruction is only 32 bits in total!

The li assembly language instruction is actually a pseudo-instruction that corresponds to two separate
assembly instructions that do have machine code equivalents:

lui t0, 0x12345 # load value into upper bits of register tO
addi t0, tO0, 0x678 # add value to register t0 (lower bits)

The first instruction uses 20 bits of the instruction to store the immediate value 0x12345. The contents
of register t0 (which is an alias for register x0) after the instruction will be 0x12345000.

The second instruction adds the value 0x678 to the contents of register t0, resulting in the final value of
t0 to be 0x12345678.

In summary, although there is not an exact one-to-one mapping from assembly language instructions to
machine code, the mapping is often so direct and predictable that it is commonly described as one-to-one.

Page 2 of 2



